
Hello
World!
A new grad’s guide to coding as a team

CONTENTS

Foreword
Scott Farquhar, Co-Founder/Co-CEO

Full-time school to full time life	
Jamie Georgeson, Developer

Why I was wrong about code reviews
Steve Haffenden, Lead Developer

Try pair programming
Lucy Bain, Front-end Developer

Letter from an @ignored test
Mauri Edo, QA Engineer

Functional programmers vs.
functional engineers
Sidney Shek, Developer

When I grow up, I want to be...
a team lead?
Agnes Ro, Senior Team Lead

On being a woman in tech
Denise Unterwurzacher, Developer

Maintaining a growth mindset
Steve Haffenden, Lead Developer

Just bloody do it
Gilmore Davidson, Developer

Resources & further reading

3

5

11

14

20

23

28

33

37

43

45

3

Congratulations!
The hard work you’ve put in
and perseverance you’ve shown
over the past few years has paid
off. Now the fun begins (and I
don’t just mean a summer of post-
exam partying, though that’s a lot
of fun, too).

Amongst the myriad transitions
you’re making is one that doesn’t
often get mentioned in com-
mencement speeches: you’re

about to go from being a student to being a teammate. Even if you worked on
dozens of group projects in school, you’ll find that working on a professional
software team is different.

Really different. And in a good way.

Chiefly, you’ll be able to accomplish far more with your team than you ever
could on your own.

We often celebrate the “lone genius” because they’re not only accomplished,
but highly visible. It’s easy to forget that they don’t work alone. Mark
Zuckerberg and Elon Musk have massive teams of engineers, designers,
and advisors helping bring their visions to life. Derek Jeter, Steph Curry, and
Misty Copeland are surrounded by teams that include coaches, trainers,
and doctors, in addition to their fellow athletes. Even musical acts like Taylor
Swift and Lorde have teams behind them: sound engineers, producers, and
other musicians who support them in the studio and on the stage.

Talk to anyone in any industry and they’ll tell you that the best work of their
lives was (or is) as part of a team.

4
My first professional team was a team of two. Just me and my best mate,
Mike Cannon-Brookes. When we graduated in 2001, most programming
jobs in Sydney were at banks, which was a bit too buttoned-down for our
tastes. We figured if we could code for a living without having to wear a tie,
that’d be pretty sweet. So we teamed up and started a company.

Now our team has grown to over 1500 Atlassians. Developers, designers,
customer support engineers, accountants, recruiters... you name it. They
are talented, dedicated, delightfully weird, and together we’re building
something I’m truly proud of. Something bigger than the products we make.
Together, we’re proving that trust, transparency, empathy, and collaboration
are the currency of the modern workplace. There’s no way I could do this
on my own. Not in a hundred lifetimes.

This book comes from our team of developers. They think a lot about what
it means to be a great developer and a great teammate, and they wanted
to share their thoughts. As you’ll see, they believe life-long learning, humility,
courage (including the courage to humbly accept critiques), and openness
are every bit as important as being a killer coder. I hope these essays give
you a head start in building a set of life skills to complement the technical
skills you learned in school.

The energy and fresh perspective computer science graduates bring each
year is an indispensable asset to the tech industry. We’ve got a million
dreams to turn into reality, and only one lifetime to do it in. Welcome!

P.s.: Atlassian is hiring! A lot. Check out atlassian.com/careers to learn more.

Scott Farquhar
Co-Founder/Co-CEO, Atlassian
Class of 2001

http://atlassian.com/careers

5

7 MINUTE READ

From full-time school
to full-time life

Jamie
Georgeson
Developer
JIRA
Class of 2015

Toxic Habit #1: overwork and brute-force timing

I’ve heard friends, family, lecturers, and even bosses stress the
importance of work/life balance. And I quietly rejected them as lazy.

If you want better marks in uni, the recipe is simple: sleep less,
study longer, and work ahead. So everyone who’s even slightly
motivated keeps calm and quietly soldiers on. And this has always

Hi, I’m Jamie, one of 80 new graduates to recently join Atlassian as
a developer at our headquarters in Sydney. I’m in the middle of tran-
sitioning from “full-time study, plus part-time work” to “just full-time
work”. Seems like that should be easy, right?

It’s not.

It’s hard in all kinds of ways I didn’t expect. Habits and attitudes that
worked well for me and my peers during university (we call it “uni”
down here in Australia, btw) are now unproductive — possibly even
toxic.

Unlearning the behaviours I worked so hard to develop over the last
four years is both mechanically difficult and a little bit soul-crushing.
Luckily, I have experienced peers who tolerate my confused ques-
tions, share their wisdom, and generally help me make the move

from uni life to real life. They’ve
been good to me.

Now it’s my turn to share what I’ve
learned with other new and soon-
to-be grads. Maybe this will give
you a head start on the massive
brain rearrangement you’re about
to undergo.

Maintaining a healthy
work/life balance isn’t
lazy. It’s actually harder
than working 80 hours
a week.

“

6

FROM FULL-TIME SCHOOL TO FULL-TIME LIFE

worked really, really well — regardless of how tired your Nana says
you look.

What’s different now? I don’t actually know (brute force will proba-
bly still work for a while). But I have a new perspective, regardless.
Maintaining a healthy work/life balance isn’t lazy. It’s actually harder
than working 80 hours a week.

Saying “no” in the name of protecting your off-hours time is harder
than saying “yes” and taking on more work than you can handle.
Eating right and getting enough sleep requires discipline, but boosts
your long-term productivity. And it’s about more than your own
well-being: you’re an important part of a team, and you all rely on
each other.

Maybe you (ok: I) genuinely think burnout won’t apply to you (i.e.,
me). But if we keep moving at the speed of uni, one day it will.

We’re playing the long game now. So if you really care about getting
$#!τ done, go to bed on time and eat your peas. Call your Nana
this week, too. Take it on as a personal challenge. It’s not a lapse in
work ethic.

Toxic habit #2: competition and one-size-fits-all evaluation

I’m not a competitive person in that I don’t care about being the
best. I do, however, desperately strive for adequate.

It’s easy to evaluate yourself against your peers in uni. Everyone
completes the same prescribed work at the same time under the
same conditions, and everyone gets a nice, clean, quantifiable
outcome at the end. If your marks are above the mean, you’re doing
OK, and you can wallow in something other than self-loathing for
the next week (I recommend fear of the future).

What’s different now? One-to-one comparisons are totally invalid.

How would you, even? We were all hired for different reasons, we all
have different skills, and we’re working on different problems. You
can’t get down on yourself because someone knows more Scala
than you or because they’re “more creative”. They’re equally in awe

7

FROM FULL-TIME SCHOOL TO FULL-TIME LIFE

of a different trait in someone else. The awe goes around like links in
a chain and links back to you eventually, whether you know it or not.

In uni, we were expected to be on top of everything. But the prod-
ucts, services, and systems we work on with our post-uni teams are
too big and too complicated for one person to be across it all. So
relax for two seconds and adjust your perspective.

More importantly, grading yourself against your teammates is
irrelevant. Who cares how capable you are relative to everyone
else? What’s important is to figure out what you can contribute
to the team, do that hella hard, and never stop trying to be awe-
some. Growth mindset FTW.

This is by far the hardest adjustment for me to make, and I’m still
struggling with it. How do you know that you’re progressing fast
enough as a developer if you can’t compare yourself with your
peers in similar positions? How do you know that your personal
goals are ambitious enough? Where is the baseline? AND FOR
THE LOVE OF GOD, WON’T SOMEBODY GRADE ME, PLEASE?!?

The advice I got was to maintain open communication with my
manager and let them help guide my progress. It’s definitely helping.
I recommend it.

8

FROM FULL-TIME SCHOOL TO FULL-TIME LIFE

Working full time is like
learning to walk again.
Except my legs are made
out of pudding and the
floor is lava and there’s a
shark in the lava...

“

Beyond that, I’m replacing “compare myself to other new grads”
with “aspire to someone way above me.” My team has some pretty
smart people — people who are incomprehensibly capable in my
squishy little grad mind. Your team will be no different: it’s full of
people who are clear examples of “what to be”. Work with them

on a project or sit with them at
lunch and figure out how they’ve
achieved what they’ve achieved.

New habit: take a different
road for your extra mile

Maybe you scoff at a 40-hour
work week as “casual”, and are
still desperate to commit more
time to your craft. But how?

It used to be easy: if I had a quiet week at uni, it became a busy
week at work (and vice versa). I used to think putting my head down
and doing more of whatever it is I’m already doing was the best use
of my excess energy.

What’s different now? I’ve discovered loads of auxiliary activities
that make me more productive because they make me more bal-
anced. Here are a few ideas:

Organise volunteer work for your team. A day at a soup kitchen?
A longer-term engagement with the tutoring program at that nearby
school? A hackathon in which you help a local non-profit jazz up their
website? You will feel so good for it. And speaking of hackathons...

Make the most of 20% time and hackathons. Maybe your team
allows people to work on passion projects 20% of the time. Maybe
your company does 24-hour events like Atlassian’s ShipIt days.
Use these opportunities to fill in gaps in your knowledge, explore
your crazy new ideas, and/or tackle a hard problem.

Help a team member. Or me. If you’re in Sydney, come help me
specifically. (I’m at 341 George Street, 8th floor, near the service

9

FROM FULL-TIME SCHOOL TO FULL-TIME LIFE

elevators.) But seriously: someone somewhere is struggling with
something and could use a hand.

Write a blog  Share something on your company’s intranet or
LinkedIn Pulse or just your Facebook page. Somebody somewhere
will learn something from it. Promise.

And if you really insist on doing more work after you go home, at
least work on your own projects. Learn a new language (whether
spoken or coded), build that sculpture you’ve always dreamed of
taking to Burning Man, write a short story. I hear about people who
get into software development or design or architecture because
they love it... only to hate it once it becomes a career. Let’s not let
this happen to us.

I have no idea what I’m doing

I may have tricked you in to thinking I’ve nailed down how to survive
in the workplace long-term, but I’m still struggling to put all this into
practice.

Working full time is like learning to walk again. Except my legs are
made out of pudding and the floor is lava and there’s a shark in the
lava (I think his name is Bruce). But that’s cool. I’ll get into my com-
fort zone soon enough, and then I’ll get bored with that zone and
move outside it again. It’s the circle of life for us career-minded kids.

The people around us are awesome at what they do (literally inspir-
ing awe), and we’re properly inadequate (in a good way, because
aspirations). For now, it’s enough to be thankful for the opportunities
in front of us and the support we’ve had so far. Good luck out there,
everybody. 

W O R D S O F W I S D O M

Ask your
teammates
questions

rather than
trying to

solve it all
by yourself.

“When you get stuck on a problem, demonstrate your brilliance
by asking your teammates intelligent questions rather than trying to
solve it all by yourself (you will take too long and will still be wrong).”

Malcolm Purvis, JIRA Developer | Class of 2015

11

Why I was wrong
about code reviews

Steve Haffenden
Lead Developer
JIRA
Class of 1996

If you’ve ever had to go through the process of a code review then
I’m sure you’d be familiar with the time-honored tradition of raising
a pull request and having your hand-written code critiqued. This is
something that I’ve traditionally disliked. It’s slow, can be distract-
ing, and if I’m being completely honest, I don’t like hearing that I’m
wrong. Who does?

However, as a new member of my team, I thought it best to do
things the right way and I found myself relying heavily on the code
review process. For me, what I had once considered a mere a rub-
ber stamp on my work became a process that helped me identify
inconsistencies in my code style and validated that I was still capa-
ble of writing Java.

The code review became such a positive experience for me as a
JIRA Software engineer that I started thinking I’d been unfairly harsh
on the whole code review process and that I needed to change my
perspective.

Better than yesterday, not as good as tomorrow

There’s a UK hiphop artist called Scroobius Pip and you’d be
forgiven for not being familiar with him, but in the context of code
reviews he’s important for penning the following lyrics:

If your only goal’s to be as good as Scroobius Pip
Then as soon as you achieve that your standards have slipped
If your goal is always to improve on yourself
Then the quest is never over no matter how big your wealth

You see, it’s important that we all strive to be better at everything
that we do. That doesn’t mean comparing ourselves to others, but
rather taking the time to look at ourselves to compare the way we
do things now against the way we did things yesterday and the way

4 MINUTE READ

12

WHY I WAS WRONG ABOUT CODE REVIEWS

we want to do things tomorrow. Improving our own skills and tech-
niques is a good practice and makes every day a challenge.

Check your code review technique

Code reviews are an integral part of development culture at Atlas-
sian and many other companies, but it can be easy to treat them
with a certain amount of disdain. Us devs often find ourselves on
the receiving end of a code review feeling tempted to give it only a
cursory glance before clicking the approve button, or maybe waiting
until someone else completes it before submitting our own approval
without checking the changes. And when a code review is creat-
ed, we may not always provide the necessary context around our
changes or set up an instance to allow our reviewers to validate our
changes easily. Lastly, we often fall into the trap of taking feedback
on our code as a criticism of our abilities rather than an opportunity
to hone our skills.

The thing is, different people will identify with the role a code review
plays, well, differently. Some may view it as a method of identifying
errors in code, a form of testing, a rubber stamping process, or even
human linting. To make the most out of each code review it’s worth
considering the benefits it offers to your own development, and ask
yourself: How does this review to help me grow as a developer?

Keep coding, keep growing

The crux of the matter is that the code review process is a great
opportunity to take stock of your work. You might find better, more
effective ways of implementing solutions, or practice the valuable
art of providing concise and easy-to-understand feedback. Code
reviews could also help you improve your depth of knowledge in a
specific product, library, or language; or even just increase your abil-
ity to read, understand, and reason about other team members’ code.

There’s always something new to learn in even the most mundane of
code reviews. Next time you’re starting a code review — whether it
be as a reviewer or as someone creating a review — start by asking
yourself how it can help you and your team grow. Hopefully it will
lead to a more fruitful experience for you and everyone else involved
and, as we all grow, the quality of what we produce will grow too. 

W O R D S O F W I S D O M

Be active on
open-source

software forums
even if you

aren’t an official
contributor.
“Being active and helpful on open-source software forums

will help you find jobs and grow professionally
even if you aren’t an official contributor on the project.”

Andrew Swan, Senior Developer | Class of 1985

14

Lucy Bain
Front-end
Developer
Class of 2011

7 MINUTE READ

Try pair programming

It’s not easy to start pair programming. Most of us don’t get much
of a chance in school, and often our first programming job is on a
team that hasn’t done it much (or at all) in the past. Still, it’s worth
making the effort.

So here’s a quick-start guide to help get your pairing efforts off
the ground: the benefits, the vocabulary, and different formats you
can try as you’re figuring out which style works best for you and
your teammates.

Why pair?

It’s a great way to share knowledge. You’ll learn, teach, and work
with code you might have missed. Often you understand the code
better at the end of a pairing session because each of you were
asking “why?” more than when you work alone.

You’ll get some good instruction. Pairing can be particularly useful
for new hires. It’s a great way to get to know your team, learn about
coding styles and expectations, and find who’s the right person to
ask about a given topic.

It helps you stay focused. Checking your social media site of choice
is much less appealing when there’s a person right there to talk (and
code!) with.

You’ll write better code. You don’t write code much faster with two
people, but you write it with fewer bugs, which gets you to “done”
faster in the long run. There isn’t a lot of research
to back this up — purely anecdotal.

Personally, I think the other reasons are more compelling.

If you’re thinking “aren’t these the same benefits of code review?”,
then yes! You caught me! Pair programming is indeed a lot like code
review. However, pair programming has one major advantage over

15

TRY PAIR PROGRAMMING

code review: you review in real time. That means you get to make
corrections to your code before you’ve added a bunch more code
on top of it.

If that all sounds amazing, that’s because it is. So let’s get started!

Finding a pairing partner

The first thing you’ll need is a pairing partner, who can be anyone
who wants to pair with you. A willing, happy pair is better than the

A willing, happy pair is
better than the person
who is “best matched”
in terms of experience
or domain expertise.

“
person who is “best matched” in
terms of experience or domain
expertise. And the best way to
find partners is to just start ask-
ing. If your teammates don’t take
the bait when you bring it up
casually at lunch, try sending a
meeting invite. They might take
your pairing invitation more seri-
ously when there’s a super-offi-
cial-looking calendar entry for it .

Offering to pair up on the other person’s task can be a good way
to entice people who’ve never paired before. They may politely say
they don’t want to “waste your time” by working on their task, but
push back on that. If the task is worth their time do in the first place,
it’s probably worth your time to pair on it. Besides, when you’re new
to a team, pairing is an excellent way to get up to speed on the code
base. The time they invest in pairing with you will pay off quickly in
terms of the value you add to the team.

That said, some people just don’t love pairing. It’s alright (and some-
times necessary) to push a little bit, but ultimately, be willing to
gracefully accept a “no.”

Once you’ve got a partner in (crime) code, how often you pair is up
to you and your team. Just make sure you’re all on the same page
since pairing plans may influence how many tasks your team takes
on in a given timeframe. If possible, begin with two sessions a week
with different people on your team. That way you’ll see what it’s like
to pair with different people.

16

TRY PAIR PROGRAMMING

Pairing sessions can range from 90 min one-offs to pairing all day,
every day for a full sprint. One team found many short pairings was
better, but your milage may vary. I recommend starting with 90-min-
ute sessions and adjusting from there.

Finding a pairing style that works for you

Understanding the terminology and different styles of pairing will
help you get off on the right foot. Let’s start with the vocab:

Driver: Does the typing; bounces ideas off the navigator; gets the
up-close view of the code.

Navigator: Looks for logic problems, bugs, and better implementa-
tions; acts as a sounding board, and thinks ahead to potential prob-
lems; gets the macro view of the code.

As for styles, I’ve tried or witnessed four of them. Try starting with
“the noob” and fall back to “the distracted” when you need to look
something up. Build up to “the classic.” Note: the names below are
entirely my own invention.

17

TRY PAIR PROGRAMMING

THE CLASSIC
Bring your keyboard and mouse to your partner’s desk so you can
find answers to questions as they come up (“What other libraries
might be useful here? “When was the last time anybody worked in
this area of the code?”). My team has recently set up a pairing
station with two keyboards, mice, and monitors for “plug n’ play”
pairing — pretty handy!

Keep swapping the “driver” role with your pair — usually every
20 - 60 minutes. For beginners, I recommend swapping frequently.

Pros: You get to contribute
as you go along.

Cons: Limited desk space
for extra keyboard and mouse.

THE LAZY
Same as above, but don’t bring your keyboard or mouse.

Pros: Won’t be playing
mouse-stealing games; setting
up at the beginning of your
session is really easy.

Cons: You have to move
your arm to point at the screen
(heaven forbid!).

THE NOOB
It’s generally a good idea for the less experienced person to drive,
even though that adds a bit more stress since someone is watching
you type (and typing stage-fright is a real thing, no matter how
experienced you are!). I love “the noob.” It opens opportunities to
ask questions, learn how the team does things, and learn what your
pair is particularly good at. Excellent for new hires like me!

Pros: Not as stressful;
more opportunity for the driver
to ask questions.

Cons: Usually not as satisfying;
harder to stay focused (especially
for the navigator).

THE DISTRACTED
Like the noob, but you bring your laptop with you. The navigator
keeps their laptop closed most of the time — only use it to check
syntax, Google solutions, or settle a debate. Don’t disengage from
your pair for more than a few minutes.

Pros: The navigator can
look up things easily.

Cons: It’s very easy for the pair
to get distracted!

18

TRY PAIR PROGRAMMING

Random tips

Good hygiene goes a long way. Make sure you’ve showered, put on
deodorant, brushed your teeth, eaten a mint, and skipped the garlic.

Eat before or after pairing — not during. Filling your pair’s keyboard
with donut crumbs is a great way to make them think twice about
pairing with you again.

When sharing a monitor, position yourselves so the screen is
between you. It’s tempting to sit such that the driver’s nose is
aligned with the middle of the screen, but that tends to shut the
navigator out. Better to be inclusive.

Talk a lot while you’re pairing, even if you’re just “thinking out loud”
sometimes. Seek first to understand. It makes your pair feel wel-
come.

If your first pairing experience isn’t everything you dreamed it would
be, don’t give up! Pair with a few different people before you decide
whether pairing is for you. Not everyone likes pairing, but it’s some-
thing you have to try first to know.

Happy coding! 

W O R D S O F W I S D O M

Not all
legacy code
needs to be
set on fire

immediately.
“Not all legacy code needs to be set on fire immediately.

Assume the team who wrote it are smart people who did things
for a reason. Understand the reason before sharpening pitchforks.”

Andrew Semple, Senior Developer | Class of 2009

20

Mauri Edo
QA Engineer
Class of 2002

4 MINUTE READ

Letter from an
@ignoredtest
Dear Developer,

I’ve been wanting to talk to you for a while now, but words don’t
always come easy. We’ve been a great team and had some really
fun times together. I still remember the first time I warned you about
a minor bug in your code, and how happy you were for having me
in your life! Do you remember it? I also remember the first time you
refactored me to make me more efficient and how well-written I felt
afterwards... ah, great times!

I owe you everything, I know. And I’m thankful for it. I wouldn’t exist
if it weren’t for you. You thought that I was needed so you created
me, and from that moment on I am at your service, and I am glad to
be, as you gave me a purpose. I want to catch bugs. I want to give
you assurance that things will continue to work after your changes.
I want to make life easier for you and your team, and you know I
can do all those things — I know you do.

But then, with no clear explanation, I started to fail sometimes, for
no specific reason. Something broke a little inside of me. I was able
to continue functioning almost normally, but I couldn’t avoid caus-
ing red builds from time to time, it was simply out of my control. I
became... flakey.

My flakiness upset you, and I am not angry about that, as it upset
me too. I was not reliable anymore. I lost my purpose. At this point,
I have to say, it hurts me to remember how you reacted after some
weeks of flakiness: instead of investing some love and dedicate
a couple of hours to fix me and get me back to a good state, you
annotated me as @ignore and abandoned me in an immense and
desolate codebase.

My statements and assertions can’t help but shed a tear when I
think of this. For an automated test, being flakey is bad — but at
least I passed successfully from time to time, and my failures were a

21

LETTER FROM AN IGNORED TEST

reminder that I needed some of your magic. But being ignored? My
friend, that is simply terrible.

If there is a hell for automated tests, it definitely is being annotated
as @ignore and forgotten, being surrounded by successful tests that
go green and not being able to join them, watching builds pass by
and not pick me up, sitting between infinite lines of code, hopelessly
waiting, needing to be fixed and not being taken care of... I would
never wish that even to my worst automated test enemies.

Don’t get me wrong, I understand that automated tests have a life-
cycle, and eventually they get replaced by other automated tests 
— better and more modern. Sometimes our flakiness can’t be
resolved, so we need to be removed or replaced, and that’s ok.
Sometimes the code we are testing is simply retired, so we have
no purpose anymore, and that’s ok as well. It’s part of who we are.
But hey: I am code too, you know? I need attention! I need to be
implemented and refactored properly so your whole team can ben-
efit from me! I need to be code reviewed by your teammates to spot
issues that I might have, because tests can have bugs too!

It’s simply unfair to only look after feature code and, when forgotten
tests start to fail, annotate them as @ignore and continue your day
as if nothing happened. It’s outrageous!

All I am asking is for you to make up your mind about me. Either fix
me or delete me, but do not forget about me! Humans have issues
with decisions, as we lines of code know, so if you need to get away
with a green build and ignore me for a couple of runs, it’s fine. Really!

But if you are not going to come back immediately and find what’s
wrong with me and why have I been flakey recently, have some
decency at least: raise an issue in your bug tracker, so that someone
else on your team can give me the attention I need to get back on
track and provide some value again. It’s not that hard, is it? Please?
For all the green builds we’ve had together?

I sincerely hope we can sort out our differences soon.

Forever yours,
@ignored test

W O R D S O F W I S D O M

Practice putting your code where people can use it.
Running code only on your local machine is like learning

to skydive without ever putting on a parachute.
Ian Buchanan, Developer Advocate | Class of “Hard Knocks”

Make a habit
of putting
your code

where others
can (and will)

use it.

23

Functional programmers
vs. functional engineers

5 MINUTE READ

Sidney Shek
Developer
Class of 2000

I’ve felt resistance to functional programming and to functional
programmers ever since functional programming became “a thing”.
While I’m disappointed by the arguments made against functional
programming, I am equally (if not more) frustrated that the functional
programming point of view has not evolved, leading it to be easily
derided as developer religion.

It’s time to move the discussion forward. Because no matter our
views on functional programming vs. object-oriented programming
vs. whatever else, we all need to be functional engineers.

Functional engineering is more than writing code. It’s about solving
problems in the context of the world we work and live in.

There are imperfections in the real world. We run into complexities
that can’t be modeled nicely yet still need to integrate with other
(sometimes poorly-designed) systems. There are constraints in
resources and schedules in order to hit business goals and keep

Functional engineering
is more than writing
code. It’s about solving
problems in the context
of the world we work
and live in.

“
the ship afloat. We have to make the
compromises necessary to deliver
solutions that meet all these require-
ments, negotiating where possible
while standing firm on critical aspects
(e.g., safety must be designed in; it
cannot be tested in or retrofitted).

Our compromises and firm stances
need to be data-driven because
engineers do not work on reactionary,
baseless theories. We hypothesise

and rely on quantitative evidence from our own experimentation and
the experiences of our teammates. Then we must be able to commu-
nicate our findings and resulting reasoning to any audience — even a
non-technical audience.

24

FUNCTIONAL PROGRAMMERS VS. FUNCTIONAL ENGINEERS

And speaking of non-technicals, we are always building up of set of
“soft” skills and business acumen. We’ll always work with non-tech-
nical people, so it’s important to be able speak their language and
apply engineering principles across other domains. This, of course,
is in addition to continuous learning on the technical side. Our field
moves fast. If you rest on what you already know for too long, you’ll
find that what you know isn’t nearly as valuable as it used to be.

Build with urgency and quality

I also want to address the argument against time pressure — e.g.,
“your can’t rush innovation”. While time pressure probably is indeed
a lousy way to foster innovation, we do live in a world of fast deliv-
ery of customer-facing value. Deadlines aren’t just some arbitrary
date from managers. They are driven by observing the market we
operate in. Every company has competitors moving faster. Being a
functional engineer means treating fast delivery and high quality
as hard requirements. As if your team’s survival depended on it
(spoiler alert: it does).

Let’s not dismiss this reality. Instead, let’s look at it as an opportuni-
ty to prove our strength.

Those of us who’ve been lucky enough to choose the technology
stacks for their projects also need to remember the responsibility
that comes with that freedom. If we don’t show improvements in
delivery, it becomes harder for even the most supportive team leads
to justify letting us make those choices the next time around (and I’m
talking about the elephant in the room, here: mandated tech stacks).

So let’s work together to support our team leads and prove we
deserve the trust they’ve placed in us.

Deliver solutions, not components

Functional programmers (and software engineers in general) like to
tinker with code. But functional engineers balance perfecting the
code with ensuring the overall system is delivered and maintainable.

Considering the system as a whole is not simply a matter of con-
sidering all its smaller parts. There are operational considerations,
documentation, integration of all the services, migration, then finally

25

FUNCTIONAL PROGRAMMERS VS. FUNCTIONAL ENGINEERS

the roll-out to customers. That’s
a lot to do beyond just the coding
itself. And it all needs to fit into
the time between now and the
delivery date.

We can do ourselves a favor by
applying functional programming
principles not just to the code, but
to the architecture of our systems.
For example, some of the work

We can do ourselves
a favor by applying
functional programming
principles not just to the
code, but to the architec-
ture of our systems.

“

in perfecting a small microservice ends up going to waste because
microservices are meant to be thrown out and rewritten if they no
longer meet your needs. By contrast, applying functional concepts
such as append-only stores and event-based architectures helps
our efforts live much longer. This, in turn, let us spend more energy
perfecting the system as a whole, instead of rabbit-holing on individ-
ual components.

Apply the principles of functional programming
(versus “Functional Programming”)

The term “Functional Programming” means different things to
different people. Some fear it, some love it, some believe they are
doing it but don’t really understand it. I feel the term is getting in
the way of everyone understanding that we’re all talking about the
same principles.

Immutability wherever possible. This isn’t just a Functional
Programming thing. It’s a tenant of building high-performing,
highly-concurrent systems.

Less code means fewer bugs. Use available libraries over writing
things ourselves not only means less code, it means more time for
documentation, migration, and all the other things I mentioned above.

Don’t repeat yourself. Find the right abstractions to reduce code
duplication.

Think of software as data transformation. Almost all software we
write is mainly just reading data from somewhere, allowing code or
user transformations, and then saving it somewhere else.

26

FUNCTIONAL PROGRAMMERS, FUNCTIONAL ENGINEERS

We should seek to apply these fundamental principles in any
codebase we work with — whether using a Functional Programming
language or not. We will all be better for it. And for the true believers
among us, getting our teams to make the next step toward Func-
tional Programming (capital F, capital P) will become easier.

At the end of the day, everyone on your team wants to deliver
systems quickly with valuable functionality and as few bugs as
possible. As functional engineers, we need to seek the understand
the environment we work in, and deliver the whole solution to our
customers.

We have lots we can do and try. So let’s get to it! 

W O R D S O F W I S D O M

“Learn pragmatism and how to make trade-offs. This is
hard if you come from a field of study where correctness

is the only metric. But as a professional developer,
delivered business value is the metric.”

Robbie Gates, Senior Architect | Class of 1992

Learn how to
make trade-offs.
Business value

trumps correctness
every time.

28

When I grow up, I want
to be... a team lead?

Agnes Ro
Senior Team
Lead
Class of 2008

6 MINUTE READ

It’s not quite what I had in mind when growing up, but right now
my role title tells me I am a team lead. In the course of my time in
this role, I’ve learned that being a team lead is something my fellow
developers are interested in doing someday, so I want to share
about my experience. This is what I’ve learned.

People management

I’ll start with the obvious. A team lead is supposed to manage the
people on their team. For me, these people are usually developers.
Of course, everyone is different and situations arise in a variety
of ways, some that I can prepare for or help with and some that I
cannot.

Over the years I have learned a lot about how to manage people and
how to deal with common problems, but the one common denomi-

nator is that I don’t always know
what to do in 100% of the situ-
ations. This is certainly a nev-
er-ending learning exercise. It’s
an interesting aspect of the role
that managing no one person is
ever the same. Getting a team of
different people to work together,
keeping them challenged and
motivated, ensuring they are per-
forming, improving, and growing,

Seeing teams form to
reach their potential and
watching individuals
progress in their career is
what I find most rewarding
about my job.

“

is all quite interesting and challenging. Seeing teams form to reach
their potential and watching individuals progress in their career is
what I find most rewarding about my job.

Project management

Generally as team lead, I’m also the one managing the projects and
making sure they get delivered on time (<– why is that bit so hard?!).

29

WHEN I GROW UP, I WANT TO BE... A TEAM LEAD?

Delivering the right features, a good user experience, and high
quality software on time is damn hard. There are so many equally
important projects going on that should have been delivered yester-
day. There is never enough time, so you have to constantly prioritise,
which often means just saying no.

The illustration below best describes the situation I often find myself
in. Just picture me in the middle of this four way tug-of-war. In
front of me is a product manager, who tells me all the lovely, but
never-ending list of things we must do. To the left I have a designer
showing me designs for the best user experience we could possibly
build. To my right is the quality engineer who always seems to be
scolding me about our test coverage and quality of code. And of
course, behind me are the developers who tell me things are going
to take longer than estimated, complain about the amount of code
debt we have, and explain how we need to build things better.

Now, I may be slightly exaggerating here, but the truth is, everyone
is rightfully doing their job and pulling me in the direction they are

30

WHEN I GROW UP, I WANT TO BE... A TEAM LEAD?

supposed to. I just happen to be the person in the middle. The trick
is finding the right balance and not falling over, which is quite hard to
do. I sometimes worry if I’ll even make anyone happy in this con-
stant game of give and take.

When I’m not embroiled in a game of tug-of-war, some other things
I do associated with project management include sprint planning,
roadmap planning, people planning, risk mitigation planning, deploy-
ment planning and planning for planning (yes, it’s a thing).

Letting go of coding is
probably the first thing
most devs-who-become-
team-leads struggle with.

“ Having a bird’s eye view

This overlaps with project man-
agement a bit, but I tend to think
about it separately since it’s on
my mind a lot. As someone not on
the ground coding everyday, I am
able to take a step back and look
at what my team is building more

holistically. There is always a constant stream of questions to be
asked and decisions to be made, ranging from technical concepts
like implementation to other concepts like if the user experience
makes sense. A final aspect of this perspective is considering the
project dependencies, or how my team is depending on a different
team, and how other teams are depending on us.

Wearing different hats

You don’t necessarily have to be a team lead to wear different
hats, but it’s absolutely required of me when the product manager,
designer, or QA engineer isn’t available. I don’t claim to do any of
these roles particularly well, but I have to learn to think like these
people. It is quite common for questions to arise once development
has already started, and it’s usually quicker for me to make these
small decisions on the spot, which is where putting myself in some-
one else’s shoes comes in handy.

Conversations

As a team lead, my calendar is full of meetings, which I prefer to call
conversations, because that is what they are. Besides my 1-on-1s
with the people I manage, my mentors, and my managers, my cal-

31

WHEN I GROW UP, I WANT TO BE... A TEAM LEAD?

endar is usually full with conversations about the software we’re
going to build. There is planning to be done, design reviews to go
over, technical discussions to be had, and more.

Coding

To be honest, I hardly code any more. I code 1-2 hours a week if
I’m lucky organized. Most of the team leads I know don’t code much
either. Letting go of coding is probably the first thing most devs-
who-become-team-leads struggle with. I learned that as team lead
it is not my priority to be writing code. In fact, when I do have to
code, I’m not as efficient as another developer because I haven’t
been following the issue entirely through the workflow. In an attempt
to keep up, I try to do random code reviews, set up a dev environ-
ment, do a bug fix, or simply pair with whoever is available.

Well, this is my experience being a team lead. Even after a few years,
I still find my job stressful, challenging and hard, but for the most part,
it is highly rewarding and enjoyable. If one day you find yourself in my
position, I hope hearing about my experience will have served you
well in the challenges and opportunities you will face. 

W O R D S O F W I S D O M

Working as a
team at work

is way more fun
than working

on group
assignments.

“Working as a team at work is way more fun than working on
group assignments at school. And way more important.”
Andre Serna, Development Manager | Class of 2001

33

5 MINUTE READ

Denise
Unterwurzacher,
Developer
Class of 2004

On being a woman
in tech
I’ve been working in technical roles for about 13 years — as a sys-ad-
min on an IT team, support engineer, and currently as a developer.
The tech sector has grown a ton in that time, which means loads of
new people are coming in. Some are fresh out of school, some are
seasoned HR or legal or finance professionals transitioning into tech
from retail, banking, etc. Either way, they’re often coming from en-
vironments with a rich ethnic mix and a near 50/50 split of men and
women. So walking into a company that is predominantly male and
overwhelmingly white can be a bit of a shock (even for white guys, I
imagine).

We as an industry have finally started facing up to our lack of diver-
sity in the past few years. It’s not a women’s issue or an LGBT* is-
sue or an issue for any one group. It’s our issue, collectively. And it’s

going to take all of us to reach
a point where it’s not an issue
anymore.

“One of the boys”

I ignored the lack of diversity for
a long time, as do a lot of young
women. I was pretty happy being
“one of the boys”. (Not all women
in tech feel that way, of course.)
There’ve been some awkward
moments, nonetheless.

Like the first time I wore a dress to work, which was at least six
months after I’d started. People noticed. I could see my teammate’s
faces change slightly as they realized “Oh right: Denise is a woman.”
Or the time someone came to standup with a cheerful “Hey, guys!”
then saw me and sheepishly asked if it was ok to say “guys” when
referring to our team. (I said it was fine with me.) Whilst neither epi-

I’m lucky enough to be
comfortable as one of the
only women around, and
consider it my responsibility
to help make other women
feel comfortable, too.

“

34

ON BEING A WOMAN IN TECH

sode materially changed the way my teammates felt about me, they
did make me hyper-aware of being the lone female.

Even when women do feel comfortable as one of the boys, it’s not
like all problems are solved. Sometimes there’s one woman on the
team and she’s so used to being the only woman that it’s become
part of her identity. If another woman joins the team, all of a sudden
her identity is threatened, which can lead to a hostile environment
for the new team member. I’ve experienced this kind of un-welcome
myself, actually.

The sad fact that nobody wants to talk about is that women in tech
can be our own worst enemy.

The way we present ourselves can either invite other women to feel
welcome, or make them feel intimidated. I’m lucky enough to be
comfortable as one of the only women around, and consider it my
responsibility to help make other women feel comfortable, too. It’s
one way I can live two Atlassian values: “Be the change you seek”
and “Build with heart and balance”.

Confronting bias and privilege

Everyone carries unconscious biases and everyone enjoys privilege
of some sort. The trick is being aware of them. (Even my comfort
being one of few women in my department is a type of privilege,
for example.) But few of us, myself included, have the self-aware-
ness to understand all our biases and all our privileges. So what’s a
well-intentioned techie to do? We can listen.

When somebody makes you aware of something that’s made them
feel uncomfortable or marginalised, take that at face value. Even if
you can’t imagine how someone could possibly be upset by it. We
have to remember that we all live different lives filled with different ex-
periences, and that everyone is fighting some kind of personal battle.

Listening — really listening — is hard. We’re trained by evolution to
shut down or get defensive when we’re feeling exposed and vulner-
able. We have to make the effort to step outside ourselves and stop
looking at the situation through the lens of our own personal expe-
riences. That’s what opens us up to understanding where the other
person is coming from.

35

ON BEING A WOMAN IN TECH

We have to overcome our own particular world view — to stop looking
at the situation through the lens of our own personal experiences.

And, incidentally, making mis-steps doesn’t mean you’re a bad
person. Embrace them as learning experiences and get back to the
business of being awesome.

Everyone is invited

The benefits of diversity are totally obvious and totally impossible
to quantify at the same time. We techies want to make software for
the whole world, which we’ll do a far better job of if the world is well
represented on our teams. And each of us embodies a unique mix-
ture of the human experience informed by our ethnicity, gender, age,
religion, personal philosophies, hobbies... all of it. There are things
you’ll bring with you as a human that I won’t, and vice versa.

It’d be great if we look back in ten or twenty years and wonder why
on Earth we ever had women in tech or Latinos in tech events be-
cause it’ll just seem absurd. But we’re not there yet. The more that
we can make tech an inviting place, the more diverse tech will be-
come, and things will spiral upward from there.

I hope you’ll join me in working to make tech more inclusive, whether
you’ve been here for ages or are just arriving. 

W O R D S O F W I S D O M

“Don’t burn bridges. Our industry is surprisingly small
and behaving badly in one job can easily come back

to bite you at a different company.”
Gillmore Davidson, Developer | Class of 2000

Our industry
is small.

Behaving badly
can come back
to haunt you.

37

8 MINUTE READ

Maintaining a
growth mindset
The concept of a growth mindset (as opposed to a fixed mindset) is
a popular topic lately, and I sometimes say to myself “Self, you need
to embrace the growth mindset. The growth mindset is cool.” Why?
Because the aptly-named growth mindset helps us grow in whatever
we pursue — especially in our work. When we’re growing, we’re more
productive. And when I’m productive, I just feel better. Know what I
mean?

I believe my inability to stay in a growth mindset keeps me from
heading home smiling more often. So I’m writing this to call myself
out for moments of fixed-mindedness (maybe you’ll recognize a bit
of yourself in those moments as well), and share my techniques for
working through them. If we can get better at catching ourselves
in the moment as our brains revert to a fixed mindset, we can pull
ourselves back into growth-iness and ultimately be more fulfilled.

For those new to the concept, here’s the difference between a fixed
and growth mindset:

Steve Haffenden
Lead Developer
JIRA
Class of 1996

FIXED
MINDSET

GROWTH
MINDSET

Avoids EmbracesCHALLENGES

Loses focus Persists in spite of OBSTACLES

“It’s fruitless.” “No pain, no gain.” EFFORT

Ignores Learns fromCRITICISM

Threatened by Inspired bySUCCESS OF
PEERS

Fails to reach
potential

Has higher goals,
achieves more

38

MAINTAINING A GROWTH MINDSET

This whole concept struck a chord with me because every time I try,
I get only so far before encountering something difficult and I stop.
Behaving this way is all well and good when it comes to rock climb-
ing, or judo, or kite surfing (among the many activities I’ve failed to
master). But when it comes to my work, it’s a problem.

Challenges

Here’s an example of when I wasn’t in the right mindset: learning
Java. I studied a bit of Java at university, and have worked with it in
almost every role I’ve had (including my current gig as a developer
on JIRA Software), and yet I still find it hard to get my head around.

When I’m faced with a challenging coding problem, I have a ten-
dency to work over one particular aspect of it again and again until
I conclude that it’s impossible or that I’m incapable of solving it. I
sort of throw my hands up in surrender. In other words, I’m in a fixed
mindset and avoid the problem by giving up.

So, lately, I try to recognize that avoidance and take a step back. I
walk through the problem once again, bit by bit, until I see a way for-
ward. I look for new ways to think about the problem. And for me, it
always helps to talk these steps out — out loud, not in my head, and
yes: my teammates have learned to ignore me in these moments or
just put their headphones on. I jot down clues as they emerge. Soon
enough, I begin to find the root causes of the problem.

Obstacles

My first impulse when I hit a roadblock is to immediately divert
my attention to something else. Whether it’s clicking a tempting
bookmark in my browser, nipping out to grab coffee, or just about
anything to delay staying at it and fighting through the discomfort.
A coworker calls this “instant gratification monkey syndrome.” It’s
the idea that we’ll do just about anything other than the actual task
at hand if it has suddenly become challenging, and especially when
there are so many tempting diversions (articles, videos, email, social)
mere clicks away.

In Zen and the Art of Motorcycle Maintenance, Robert Persig talks
about the “gumption trap” — the phenomenon of knowing what
needs to be done, but lacking the motivation to do it. His solution

39

MAINTAINING A GROWTH MINDSET

is to stand up, put down whatever project is sucking the gumption
out of you, walk away, and return when you’re feeling more inspired.
Now, granted, this isn’t often a viable option for projects at work, but
just being able recognize what’s happening helps me make peace
with it, and usually un-traps just enough of my gumption to do
one more thing on the project. Then another one more thing. Then
another. And so on. Eventually, my momentum builds up and I’m
back in the groove.

Effort

I have similar troubles with cycling. When my alarm goes off at 5
A.M., the thought of going out on the bike is dreadful. The temp-
tation to stay in bed is strong, strong, strong — damn you, instant
gratification monkey! — but I also know this feeling won’t last and I’ll
feel guilty later.

But on the mornings when I get up and ride, I feel better. It’s hard
work, yes, and the reward isn’t instantaneous. But when the ride
is over, my body feels better and my spirit is stronger. I’m proud of
myself, and that goes a long, long way.

So when I find myself reaching for the snooze button, I think of this
feeling. I make a conscious effort to stop and think about the impli-
cations. Is going back to sleep right now giving up too easily? Prob-
ably. When I take a shower this morning, would I rather be washing
away pangs of regret, or the sweat of accomplishment? The question
basically answers itself.

Criticism

I find it useful to review each day and assess how I’ve done. As
you now know, I tend to judge my days based on my mood at the
end. My worst days are those when I simply haven’t managed to
get things together, I’ve procrastinated and wasted time, and I find
myself with very little to look at positively. And on those days, I’m a
harsh self-critic.

So I’ve learned to ask myself two questions: What was the best
part of my day? What went wrong today and how can I make sure it
doesn’t happen again?

40

MAINTAINING A GROWTH MINDSET

These questions help me focus on the good and bad aspects of my
day. Plus, they help me internalize strategies for creating more good
days going forward.

Turns out, variations on those questions help me process criticism
when it comes from people I work with. Assuming their critique is
valid (and it usually is), I can hold a mini-retrospective with myself:
Which aspects of my work am I proud of? What can I do to improve
the aspects I’m less proud of?

Dealing with criticism is the dark side of growth, I guess.

Success of others

My team contains some of the smartest people I’ve ever had the
pleasure of working with. But I didn’t always think this way.

For the longest time I was fiercely jealous of those that were more
successful or seemingly more intelligent than I. But our team’s culture
of openness and honesty helps me to understand how the work I’m
doing relates to the work my peers are doing, and how it all comes
together to create something awesome.

So where I once perceived those smarter than I as adversaries, I now
see dedicated teammates with a passion for learning. Where I once

41

MAINTAINING A GROWTH MINDSET

saw managers who were more successful, I now see peers with
skills that complement mine, and together we’re doing some of the
best work of our lives.

This shift in mindset has come from open and frank interactions
that I’ve had with fellow developers during peer reviews, in “one-
on-ones,” in hallway conversations, and through access to literally
everyone in the company.

A growth mindset opens
me up to more creativity
and possibility. I discover
I’m able to set higher goals
and actually reach them.

“
It might be impossible to retrofit
a similar level of openness and
commitment to authenticity into
an existing team, but it’s not hard
to use these concepts as person-
al mantras that influence the way
we interact with our peers. We
can choose to be more transpar-
ent or more helpful than might be
required. In other words, we can

choose to go the extra mile, we can choose to be quick to praise
and slow to criticize. We can assume the people we’re working with
are not idiots. We can seek first to understand.

Growing at work — and outside work, too

I’ve been guilty of having a fixed mindset far too often and I’m
working to change that. Things like wisdom and achievement are
the products of not avoiding hard work, and having the right mind-
set. We live in a society where the instant gratification monkey sits
on everyone’s shoulder. But the pleasures that result from determi-
nation and hard work far outweigh anything that stupid chimp has
to offer.

Maybe all this seems obvious to you, in which case, you’re lucky.
For me, I’ve found that taking the time to assess what I’m doing is
tremendously effective in keeping me on track at work. When I feel
myself losing focus I try to remember that short-term frustration will
likely result in long-term improvement of my abilities — if I stay with it.
A growth mindset opens me up to more creativity and possibility. I
discover I’m able to set higher goals and actually reach them. 

W O R D S O F W I S D O M

Move jobs or
roles regularly
to understand

all the variations
out there.

“Move companies or roles regularly when you are young
and don’t have commitments. It helps you understand

all the variations out there in the ‘real’ world.”
Mike Minns, Development Manager | Class of 1996

43

2 MINUTE READ

Just bloody do it

Gilmore
Davidson
Developer
Class of 2000

Want to put up your hand for a new project, task or conference?
Hesitating because you think you might be too new or unqualified?
Stop hesitating and just bloody do it. Put the onus of choice on the
decision makers. If it turns out that you are eligible, great! If not,
what have you lost?

From my time as a developer, it’s become clear that a lot of us
thrive on this notion of a “do-ocracy”: the idea of ownership and
individual contribution and being the change you seek. When it
comes to things you want to try, if you don’t indicate your interest,
how is anyone supposed to know? No one will think any worse
of you for trying something new. In fact, stretching yourself and
expanding your repertoire of skills should be encouraged and cele-
brated in any company.

You may have a fear of rejection, but in a friendly, supportive
environment, your fears will subside. And if you do happen to get
knocked back, don’t take it too hard — if someone else is chosen
over you, it’s usually not personal, and for a good reason. Just by
putting your name forward, you’ve already done the most important
thing — you’ve indicated your interest.

Opportunities often come up again, and by showing you’re keen the
first time around, you greatly increase your chances of being picked
the next time. Personally, I know that when I’m making a decision on
who to choose for a task, it’s a hell of a lot easier to pick someone
who’s already demonstrated their eagerness to do it.

So what are you waiting for? Stop dithering, quit hesitating. Just.
Bloody. Do it. 

 Working on
side projects
is a fun way
to learn the
full stack.
“Working on side projects is a fun way to learn and

nothing beats experience. If you build an entire
application from scratch, you’re forced to understand

the full stack to put it together.”
Lori Lee, Developer | Class of 2011

W O R D S O F W I S D O M

Books

The Pragmatic Programmer
by David Thomas and Andrew Hunt

Why Programs Fail: A Guide to Systematic Debugging
by Andreas Zeller

The Clean Coder: A Code of Conduct for
Professional Programmers
by Robert C. Martin

Don’t Make Me Think, Revisted:
A Common Sense Approach to Web Usability
by Steve Krug

Research paper

Promiscuous pairing, and the beginner’s mind:
Embrace inexperience
by Arlo Belshee

Websites

Coding Horror

The Daily WTF

Music for Programming

45

RESOURCES & READING

https://www.safaribooksonline.com/library/view/the-pragmatic-programmer/020161622X/
http://www.whyprogramsfail.com/
https://sites.google.com/site/unclebobconsultingllc/books
https://sites.google.com/site/unclebobconsultingllc/books
https://www.sensible.com/dmmt.html
https://www.sensible.com/dmmt.html
http://csis.pace.edu/~grossman/dcs/XR4-PromiscuousPairing.pdf
http://csis.pace.edu/~grossman/dcs/XR4-PromiscuousPairing.pdf
http://blog.codinghorror.com/
http://thedailywtf.com/
http://musicforprogramming.net/

